• Hee Seok Yang

Nanopatterned muscle cell patches for enhanced myogenesis anddystrophin expression in a mouse model

Nanopatterned muscle cell patches for enhanced myogenesis and dystrophin expression in a mouse model of muscular dystrophy


Academic Journal

Biomaterials

Volume 35, February 2014, Pages 1478-1486

Impact Factor : 8.806


Author

Hee Seok Yang a,b,1, Nicholas Ieronimakis c,d,1, Jonathan H. Tsui a, Hong Nam Kim e, Kahp-Yang Suh e, Morayma Reyes c,d,**, Deok-Ho Kim a, f,g,*


Abstract

Skeletal muscle is a highly organized tissue in which the extracellular matrix (ECM) is composed of highly-aligned cables of collagen with nanoscale feature sizes, and provides structural and functional support to muscle fibers. As such, the transplantation of disorganized tissues or the direct injection of cells into muscles for regenerative therapy often results in suboptimal functional improvement due to a failure to integrate with native tissue properly. Here, we present a simple method in which biodegradable, biomimetic substrates with precisely controlled nanotopography were fabricated using solvent-assisted capillary force lithography (CFL) and were able to induce the proper development and differentiation of primary mononucleated cells to form mature muscle patches. Cells cultured on these nanopatterned substrates were highly-aligned and elongated, and formed more mature myotubes as evidenced by up-regulated expression of the myogenic regulatory factors Myf5, MyoD and myogenin (MyoG). When transplanted into mdx mice models for Duchenne muscular dystrophy (DMD), the proposed muscle patches led to the formation of a significantly greater number of dystrophin-positive muscle fibers, indicating that dystrophin replacement and myogenesis is achievable in vivo with this approach. These results demonstrate the feasibility of utilizing biomimetic substrates not only as platforms for studying the influences of the ECM on skeletal muscle function and maturation, but also to create transplantable muscle cell patches for the treatment of chronic and acute muscle diseases or injuries.


Keywords

Muscle tissue engineering, Nanotopography, Myogenesis, Poly(lactic-co-glycolic acid), Muscular dystrophy

최근 게시물

전체 보기

 SCATE│Stem Cell And Tissue Engineering

 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 31116, Korea

 Professor Email : hsyang@dankook.ac.kr

 Website Manager : syc00319@gmail.com

 Tell : +82-41-550-1177

  • Facebook Clean
  • Twitter Clean
  • White Google+ Icon
  • LinkedIn Clean