• Hee Seok Yang

Fabrication of poly(ethylene glycol): gelatin methacrylate composite nanostructures with tunable...

최종 수정일: 3월 6일

Fabrication of poly(ethylene glycol): gelatin methacrylate composite nanostructures with tunable stiffness and degradation for vascular tissue engineering


Academic Journal

Biofabrication

Volume 327, 10 April 2014

Impact Factor: 4.302


Author

Peter Kim1, Alex Yuan1, Ki-Hwan Nam1, Alex Jiao1 and Deok-Ho Kim1,2,3


Abstract

Although synthetic polymers are desirable in tissue engineering applications for the reproducibility and tunability of their properties, synthetic small diameter vascular grafts lack the capability to endothelialize in vivo. Thus, synthetically fabricated biodegradable tissue scaffolds that reproduce important aspects of the extracellular environment are required to meet the urgent need for improved vascular grafting materials. In this study, we have successfully fabricated well-defined nanopatterned cell culture substrates made of a biodegradable composite hydrogel consisting of poly(ethylene glycol) dimethacrylate (PEGDMA) and gelatin methacrylate (GelMA) by using UV-assisted capillary force lithography. The elasticity and degradation rate of the composite PEG–GelMA nanostructures were tuned by varying the ratios of PEGDMA and GelMA. Human umbilical vein endothelial cells (HUVECs) cultured on nanopatterned PEG–GelMA substrates exhibited enhanced cell attachment compared with those cultured on unpatterned PEG–GelMA substrates. Additionally, HUVECs cultured on nanopatterned PEG-GelM substrates displayed well-aligned, elongated morphology similar to that of native vascular endothelial cells and demonstrated rapid and directionally persistent migration. The ability to alter both substrate stiffness and degradation rate and culture endothelial cells with increased elongation and alignment is a promising next step in recapitulating the properties of native human vascular tissue for tissue engineering applications.

조회 7회댓글 0개

최근 게시물

전체 보기