• Sajeesh Kumar Madhurakkat Perikamana, Sang Min Lee

Oxidative Epigallocatechin Gallate Coating on Polymeric Substrates for Bone Tissue Regeneration


Plant derived flavonoids have not been well explored in tissue engineering applications due to difficulties in efficient formulations with biomaterials for controlled presentation. Here, the authors report that surface coating of epigallocatechin gallate (EGCG) on polymeric substrates including poly (L-lactic acid) (PLLA) nanofibers can be performed via oxidative polymerization of EGCG in the presence of cations, enabling regulation of biological functions of multiple cell types implicated in bone regeneration. EGCG coating on the PLLA nanofiber promotes osteogenic differentiation of adipose-derived stem cells (ADSCs) and is potent to suppress adipogenesis of ADSCs while significantly reduces osteoclastic maturation of murine macrophages. Moreover, EGCG coating serves as a protective layer for ADSCs against oxidative stress caused by hydrogen peroxide. Finally, the in vivo implantation of EGCG-coated nanofibers into a mouse calvarial defect model significantly promotes the bone regeneration (61.52 ± 28.10%) as compared to defect (17.48 ± 11.07%). Collectively, the results suggest that EGCG coating is a simple bioinspired surface modification of polymeric biomaterials and importantly can thus serve as a promising interface for tuning activities of multiple cell types associated with bone fracture healing.

Keywords bone tissue engineering, multifunctionality, plant polyphenols, surface modification

최근 게시물

전체 보기

Nature-inspired rollable electronics

Academic Journal NPG Asia Materials Volume 11, Article number: 67 (2019) Impact Factor : 9.157 Author Gunhee Lee1,2, Yong Whan Choi1,3, Taemin Lee1,2, Kyung Seob Lim4, Jooyeon Shin1,2, Taewi Kim5, Hyu